Bootloader and IAP with Waijung Blockset
Aimagin

Bootloader and IAP with Waijung Blockset

Features

Flash memory organization (1MB Flash)

Flash sector memory re-mapping

Communication type

Entry point and Sector validation (Sector B and C)
CRC32 calculation

Binary conversion tool

Bootloader startup sequence

Bootloader Demo

User application and IAP protocol demo

Program the bootloader and user application firmware
IAP protocol demo

IAP testing (Via CAN-Serial Bridge)

115



Bootloader and IAP with Waijung Blockset
Aimagin

Features

e Operate in normal operation during receive upgrade ROM (new firmware), device
required to reboot only when finish receive upgrade ROM data.

e Fail safe upgrade, continue to operation in current running software in case of upgrade
fail or error. Boot loader able to retry upgrade operation when power interrupt during
erase or copy sector.

Firmware validation, reject the corrupted or invalid upgrade ROM.
Internal flash memory division into 4 sectors: Bootloader, User application, upgrade ROM
and user data.

Flash memory organization (1MB Flash)

0x8000000

Boot o Sector A (1-4),
(128kB) Boot
0xB020000
User Application Sector B (5-6):
(256kB) <« User application
O0xB060000
Upgrade ROM Sector C (7-8):

(256KkB) 4~ Upgrade ROM

O=x80A0000

Reserved
(384kB)

e Boot (128kB), this sector is program once by standard programming tool (eg: ST-Link
programmer), cannot be upgraded during application running. This boot firmware is
located on flash sector 1 to 4, total 128kB size. Optional, Read/ Write protection can be
activated to prevent unexpect write or erase.

e User application, main program sector. It is user application, manage the IAP (in
application programming) protocol. Note: IAP can be disabled if this sector did not
implementing the communication protocol for receive Boot ROM.

e Upgrade ROM, this is temporary storage area. It store the new upgrade ROM receiving
from IAP communication during main program running.

2/15



Bootloader and IAP with Waijung Blockset
Aimagin

Flash sector memory re-mapping

Sector B (User application), Flash memory address starting from 0x08020000. This start
address will be remap to offset 0x00000000, and end address of Sector is 0x0803FFFF will be
remapped to offset 0OXOO03FFFF.

Sector C (Upgrade ROM), Flash memory address starting from 0x08060000. This start
address will be remap to offset 0x00000000, and end address of Sector is 0x0809FFFF will be
remapped to offset 0XO003FFFF.

Communication type

IAP communication is data channel for receiving the new upgrade ROM. Depending on
implementation in main program (user application) running, it can be UART, CAN or other.

Entry point and Sector validation (Sector B and C)

Sector B and C can be be validated by CRC32 and firmware signature, by using binary
converter software to embedded these value into binary for upgrade ROM

Offset:

0x00000000 -\

Entry point
(For sector B only)

Sector B, or C

4 bytes, Embedded
~ CRC32 location

O0x0003FFFF

4 bytes, firmware
signature (optional)

e Entry point, located at start of sector. During MCU startup, entry point is 0x08000000
(Boot sector), boot firmware validate the CRC32 of sector C to perform upgrade if
available, then validate sector B (User application) to jump for main program operation.

e CRC32 validation

o During startup, boot loader will calculate CRC32 of sector C and B from offset
0x00000000 to offset 0XO0O03FFFB. Then compare CRC32 from calculation value
to embedded value.

3/15



Bootloader and IAP with Waijung Blockset
Aimagin

o During normal running, main program (user application) validate the CRC32 of
sector C (Upgrade ROM) before reboot to operate in Boot sector.

CRC32 calculation

e Polynomial: 0x4C11DB7
e |Initial value: OXFFFFFFFF

static unsigned int crc table[256] = {
0x00000000,0x04C11DB7, 0x09823B6E, 0x0D4326D9,
0x130476DC, 0x17C56B6B, 0x1A864DB2, 0x1E475005,
0x2608EDB8, 0x22C9F00F, Ox2F8AD6D6, 0x2B4BCB61,
0x350C9B64, 0x31CD86D3, 0x3C8EAO0OA, 0x384FBDBD,
0x4C11DB70,0x48D0C6C7,0x4593E01E, Ox4152FDA9,
0x5F15ADAC, 0x5BD4B01B, 0x569796C2, 0x52568B75,
0x6A1936C8, 0x6ED82B7F, 0x639B0ODA6, 0x675A1011,
0x791D4014, 0x7DDC5DA3, 0x709F7B7A, 0x745E66CD,
0x9823B6EO, 0x9CE2AB57, 0x91A18D8E, 0x95609039,
0x8B27C03C, 0x8FE6DD8B, 0x82A5FB52, 0x8664E6ES,
0xBE2B5B58, 0xBAEA46EF, 0xB7A96036, 0xB3687D81,
0xAD2F2D84, 0xA9EE3033, 0xA4AD16EA, OxA06COBSD,
0xD4326D90, 0xDOF37027, 0xDDBO56FE, 0xD9714B49,
0xC7361B4C, 0xC3F706FB, 0xCEB42022, 0xCA753D95,
0xF23A8028, 0xF6FBIDIF, OxFBB8BB46, 0xFF79A6F1,
OxE13EF6F4, 0xESFFEB43, 0xES8BCCDY9A, 0xEC7DD02D,
0x34867077,0x30476DC0, 0x3D044B19, 0x39C556AE,
0x278206AB, 0x23431B1C, 0x2E003DC5, 0x2AC12072,
0x128E9DCF, 0x164F8078, 0x1BOCA6ALl, O0x1FCDBB16,
0x018AEBR13, 0x054BF6A4, 0x0808D07D, 0x0CCOCDCA,
0x7897AB07,0x7C56B6B0, 0x71159069, 0x75D48DDE,
0x6B93DDDB, 0x6F52C06C, 0x6211E6B5, 0x66D0FB02,
0x5E9F46BF, 0x5A5E5B08, 0x571D7DD1, 0x53DC6066,
0x4D9B3063, 0x495A2DD4, 0x44190B0D, 0x40D816BA,
0xACA5C697, 0xA864DB20, 0xA527FDF9, OxA1EGEQA4E,
0xBFA1B04B, 0xBB60ADFC, 0xB6238B25, 0xB2E29692,
0x8AAD2B2F, 0x8E6C3698, 0x832F1041, 0x87EEODF6,
0x99A95DF3, 0x9D684044,0x902B669D, 0x94EATB2A,
0xEOB41DE7, 0xE4750050, 0xE9362689, OxEDF73B3E,
0xF3B06B3B, 0xF771768C, 0xFA325055, OXxFEF34DE2,
0xC6BCF05F, 0xC27DEDE8, 0xCF3ECB31, 0xCBFFD686,
0xD5B88683,0xD1799B34, 0xDC3ABDED, OxD8FBAOSA,
0x690CEOEE, 0x6DCDFD59, 0x608EDB80, 0x644FC637,
0x7A089632, 0x7EC98B85, 0x738AAD5SC, 0x774BBOEB,
0x4F040D56, 0x4BC510E1,0x46863638, 0x42472B8F,
0x5C007B8A, 0x58C1663D, 0x558240E4,0x51435D53,
0x251D3B9E, 0x21DC2629, 0x2C9F00F0, 0x285E1D47,
0x36194D42, 0x32D850F5, 0x3F9B762C, 0x3B5A6BIB,
0x0315D626, 0x07D4CB91, 0x0A97ED48, 0x0E56F0FF,

4/15



Bootloader and IAP with Waijung Blockset
Aimagin

0x1011A0FA,0x14D0BD4D, 0x19939B94, 0x1D528623,
O0xF12F560E, OxF5EE4BR9, 0xF8AD6D60, 0xFC6C70D7,
0xE22B20D2, 0xE6EA3D65, 0xEBA91BRBRC, 0xEF68060B,
0xD727BBB6, 0xD3E6A601, 0xDEA580D8, 0xDA649D6F,
0xC423CD6A, 0xCOE2DODD, 0xCDAL1F604, 0xC960EBB3,
0xBD3E8D7E, 0xB9FF90C9, 0xB4BCB610, 0xBO7DABA7,
OxAE3AFBA2, OxAAFBE615, 0xA7B8C0OCC, 0xA379DD7B,
0x9B3660C6, 0x9FF77D71,0x92B45BA8, 0x9675461F,
0x8832161A, 0x8CF30BAD, 0x81B02D74, 0x857130C3,
0x5D8A9099, 0x594B8D2E, 0x5408ABF7, 0x50C9B640,
0x4E8EE645, 0x4A4FFBF2, 0x470CDD2B, 0x43CDC09C,
0x7B827D21,0x7F436096,0x7200464F, 0x76C15BF8,
0x68860BFD, 0x6C47164A,0x61043093, 0x65C52D24,
0x119B4BE9, 0x155A565E,0x18197087, 0x1CD86D30,
0x029F3D35,0x065E2082, 0x0B1D065B, 0x0FDC1BEC,
0x3793A651,0x3352BBE6, 0x3E119D3F, 0x3AD08088,
0x2497D08D, 0x2056CD3A, 0x2D15EBE3, 0x29D4F654,
0xC5A92679, 0xC1683BCE, 0xCC2B1D17, 0xC8EAOOAQ,
0xD6AD50A5, 0xD26C4D12, 0xDF2F6BCB, 0xDBEE767C,
0xE3A1CBC1, 0xE760D676, 0xEA23F0AF, OXEEE2EDLS,
OxFOA5BD1D, OxF464A0AA, 0xF9278673, 0XxFDE69BC4,
0x89BR8FD09, 0x8D79EORE, 0x803AC667, 0x84FBDBDO,
0x9ABC8BD5, 0x9E7D9662, 0x933EBORBB, 0x97FFADOC,
0xAFB010B1, 0xAB710D06, 0xA6322BDF, 0xA2F33668,
0xBCB4666D, 0xB8757BDA, 0xB5365D03, 0xB1F740B4
bi

unsigned int crc32 update (unsigned int initial, const unsigned int *data, int
count)
{

int 1i;

unsigned int accum = initial;

for (i=0; i<count; i++) {

accum = (accum<< 8)" crc_table[ ((accum>> 24)”" (data[i]l>> 24))& OxFF];
accum = (accum<< 8)" crc_table[ ((accum>> 24)” (data[i]>> 16))& OxFF];
accum = (accum<< 8)" crc_ table[ ((accum>> 24)”" (data[i]>> 8 ))& OxFF];
accum = (accum<< 8)" crc_table[ ((accum>> 24)”" (data[i]>> 0 ))& OxFF];

}

return accum;

Binary conversion tool

[sta,msg] = amg_iaptool_binconvert('<source file>','<size>','<destination output file>)

Example, run command at Matlab Command Window: [sta,msg] =
amg_iaptool_binconvert('stm32f4_user_app_stm32f4\stm32f4_user_app.bin’,'256k’,'stm32f4_us
er_app_convert.bin’)

5/15



Bootloader and IAP with Waijung Blockset
Aimagin

Bootloader startup sequence

START

Step1

Validate Sector C,
Signature, CRC32

Slep2

¢ Stepd

Validate Sector B,
CRC32 and Stack

Erase seclar B

Copy Data, from Sector B
zector C to B valid?

v

Erase sector C
I

‘ J to ent int: !

e Step 1: at MCU startup and operate in Boot sector. Boot firmware perform sector CRC32
calculation and Signature (optional) of Sector C.

e Step 2: Firmware upgrade check, by validate sector C. Boot firmware will compare
CRC32 of sector C and its embedded CRC32 value. If sector C valid indicates the
firmware upgrade required, the next process will be Step 3. If sector C is not valid, then
next process will be Step 4.

e Step 3: Firmware upgrade operation.

o Erase sector B (User application).

o Copy entire data of sector C, write into sector B.

o Then erase sector C, so next time startup sector C will be invalid and upgrade is
not activated, the process will flow from step 2 to step 4.

o Reset

e Step 4: Main program validation. In this step boot firmware validate sector B, by verify
Stack address value, calculate sector CRC32 and compare to its embedded value. If
sector B valid, MCU will jump to entry point of sector B.

e Fail safe: in case of failure during step 3 (Power interrupt), boot firmware will retry the
operation at next start.

6/15



Bootloader and IAP with Waijung Blockset
Aimagin

Bootloader Demo

e Model file, this demonstration implementing the Bootloader firmware. This model file will
be program into sector A (Boot sector). Demo model file: stm32f4_boot_256k.mdl

B stm32d_boot 256k - = - — - - B = |1zl !g

File  Edt View Simulstion Format  Tools  Help

DEds B|&==h g |2 r o8 [i00 | [Nomal ~BEpDEs eEE®

Wimijurg: 14.00c
Compiler: GHU ARLI

. Bootloader,
" aa T frech 0007 called once during MCU startup
argat Setup /
# Boot loader fundson
ol P Bootloader function
BOO ISR == - — - — - —
|
* R
Fumnsisn-Cal
Subsystem
Feady 100% T=0.00 Fred>teplhscrete

he

When “Boot” block located in the model and after build model, Waijung will generate call
to function SYSTEM_BOOTLOADER() at file main.c.

S pm e
Main program ¥

int_T main(woid) Bootloader
{

/% Bvatem boot loader *J

SYSTEM BOOTLOADER() =

f% Initialize model &/

sTmE2fd_boot_256k_initialize(l):

#* Comtinue indefinicely =f
if (3yaTick Config |SYSTICERELOADVALUE}) {
CApLUre errar %/

while (1)

while (1) {
if {ayacick actiwe != agyatick count} {
.'|":'.'|I'.:I:"!k_ﬂl'!'l'.'.|'?l.‘ +%]
=tmi2 f‘!_hr_'ch:_iﬁl.:lr_st =pi)

model cutpucs here */

/* Profiler updatce */

7/15



Bootloader and IAP with Waijung Blockset
Aimagin

e Program Bootloader to device, this firmware will be program once from Auto Compile
and Download or manual program via ST-Link tool.

User application and IAP protocol demo

e Model file, stm32f4_user_app.mdl

e This demo model disable auto compile and download

e The protocol of communication can be customized, in this demo use CAN Bus (CCP
slave) for download ROM to upgrade.

B stm3ZR user app ™ e eIy

.Eih: Edit Wiew Simulation Format Tools Help
D& LR s | D w om iig [Homa | HERSE Y mEE®

|4.I Add dafine.  -DVECT_TAB OFFSET=0x20000

Auls Comg

Full Chig Enas

ponse data or
acknowledge 1o

m ™

Receive CAN message,

specilic 10 Mer 080
s omept 10 D=80 I
Tdsg Pen apsponse p2TE_ ol
CAMN1_Rumsive L3
Typa ID: Standard ) B
Fillad 1D: Dx0CE0 {Spadfic 5 p{naTa o ik >
Ts fseck CLO01 -
a - oizarn
CAN Repsiys Rasal |—— N ER
L Handier AN Feaponss
4 = |
|Fieady 00% FroedblepDive rete

e Build and compile model file, this model need only compile, auto download will be

disabled. The track build process show as below picture:
B Wiy Trorck Buibd Provis = = m=iiem

_- S | T | s | et |

Weagueg: Mallab: Halsa

Wajurg Campuiar POWTNSA J
pr.am Micwsol Windis [Wamion £1 7RI

Vziung sersizn: 14,05

WWagutyg Leanea: Lyahiaion Versio

weagurn il COlleaish g Dea ks SpTAALI LI G i jon e e sl o1k

Weajueg Azmnishio = Yew

dwaqueg: Copring al eoured =eader and mawze fles 1o tme trget buid direztary

L ER i WAL UGS g BUbers o brumbargbsies i pargetesim i emes sootioades_do nzt_disirbues\atniiig_Lsor_azp 1

= it GRHLLARK

5 the =nwrce cods

Crlsarsiasy ekl og WA I NGYa jung- su b s - Inuns farga kst tagalsimEzididemeizoctiosder_do nol_distrbuta st user_azp_s
Dol s e D skiog WAL UNG wau-gsubrsns o uns g sbg s 325 g elsimE 20 desmcootiosde_do_nz)_disbutetsim3 28 _user_acp s

Crilsarsibzes e skt og WAL LING U g-subwrsi o tnunstangalsist I tangalstmzid dameizoctoader_do_ncl_dissbus'stm3 2 _user_azp_s
IR Tocle Toe SRM Srdeilsanl Smcamenm) 4 B & SNAEDE elasns) [ARMWsmisilzacdd_F-haoeh rasmion 711355] -
T R,

oK

8/15



Bootloader and IAP with Waijung Blockset
Aimagin

Target Setup,
Add define at Compiler Control string: -DVECT_TAB_OFFSET=0x20000

o Select None for Programmer/ Debugger option.
o Disable (unchecked) option Full Chip Erase
@)

Enable Auto Compile and Download option (Auto download will not run due to
programmer selected as None)

W Block Parameters: Target Selug - ﬁ
=il target setup (mass) (nk]
Lisie this black tn setup STHEIF4 Targetin a Simdink moded

The sample ome of this bleck & the syshe=m base ssmoletme, [t s sutomaboaly
comperted based on sampletime of every blod: in the system model and s used o
corifigure §ystick Courter of the target.

Paramsters
Compier | GHU ARM -
MO | STM32F 4171 (LOFPL76); STM3241GEVAL |

Chack Canfiguration |M4015CD‘I'E¥'|' Defaull (HEEQSC-BMHE/HOLK- 158MH) - |

T shesw memery confguration

o Erable Auto Compile and Downdoad

T Full Chip Erase before Download

Programmer Debugger  ane -
M ShowEdit Control Strings (Recommended for advanced users only)

Compler Convinal String

nipu=fovd-sp 16 -flast-—at ‘el Wesira Cfas] CYECT _TAS_OFFSET = 20000 |

dizm=mbler Control S4ing

mhis =§{=: 5= bt} 0_ STACK _SIFE=S{STACK _SI1ZE) 0_ HEAF SIIE=S{HEAP_SLIE)
Linker Control String

mpu=Corhesme amsnumsh mfumb-nterwork mifloat-abi=hard mipu=ed-ap-die
. Run Appiication After Domnioad

Erablz Execution Tme Prodler [rione -]

& Marually st base sample time
Sampie Hme {fec)
1.001

ot || cone || B | e

—

Configuration subsystem, configure the CAN bus interface and memory used by CCP
slave handler.

W stm32f4_user_app/Configuration

File Edit ¥iew Simulastion Formet Teocls Help

b Gunﬁglrﬂmd_.urw | BEERS s  REERE

address and size

|l

CAN interface setup

L o3 o
) :iﬁ"_.SEll;:’ Configure [Array Setup] [fumay Satup] Amray Selup
Spoad fps) 2t 0000 Origin: xE020000 smme SLAVE_DEV_ID Mams: READ_DATA Mema CONTROL
=/ pin: BES Langihxlixo4000 Size E Gurm P8 Size: 250
. 7
CAH Salup Canfigure Seder ialatile Duts Asmay volazile Dasa Amay Walatile Dutn Amagl
Ready 100% Fined5tepliscrete

9/15



Bootloader and IAP with Waijung Blockset

Aimagin

e CCP Handler subsystem, basic implementation for CCP slave. Only some command

support in this demo.

W imiFE e _appTCP Hancler

=

File Edil WVies Senulation

NesHas B

Foemal T

ook Help

.}5

4 100 [Hemsl A B EEE

Ensizle

L
Ss—— | — SN e 1
- L | gz menand
ERe o e ] o procassar
DATS * TA—— e
— T= Dtm -'-.—H:;]
HHELCT Pars sril oUT
= Al
amia raad il
Lk > ) war 3 "
Parse and Hardle the | Cata [ Linlgb: - el et
UMLOCK commarsd C e ) ’
Beady 13 Foced Stepliscrete

Handla the Mesnory ranafar n (=8
ackress command

Farse and Handla the
COMNECT!
DISCONMECT commard T

~m— =

e CRO MTA Parser subsystem, handle the memory transfer address.

o

Extension address 0, Device ID. This extension address is for upload the data at
memory SLAVE_DEV_ID which defined in block “Volatile Data Array1”. The valid
address for this storage is 0 to OxOF.

Extension address 1, Read only memory. This extension address is for upload
data at memory READ_DATA which defined in block “Volatile Data Array”. This
memory can be use to store the measurement data, use block “Volatile Data
Array Write” to update this memory.

Extension address 2, Read and Write memory. This extension address is for
upload and download data at memory CONTROL which defined in block “Volatile
Data Array2”. This memory can be used for store the control value from Host.
Use block “Volatile Data Array Write” to update this memory and use block
“Volatile Data Array Read” to read value from this memory.

Extension address 3, this is Boot ROM memory address. During IAP process,
host sending ROM data to store into this memory address.

e Command Processing subsystem, this subsystem enabled only after receive CCP
connect command. List of command support implemented in this demo:

O O 0O O 0o O O O O

CONNECT
EXCHANGE_ID
GET_SEED
UNLOCK

SET_MTA

DNLOAD/ DNLOAD 6
UPLOAD
SHORT_UP
DISCONNECT

10/15



Bootloader and IAP with Waijung Blockset
Aimagin

o BUILD_CHKSUM
CLEAR_MEMORY
o PROGRAM/ PROGRAM_6

Program the bootloader and user application firmware

1. Build and Program boot firmware (via ST-Link)

Build (Auto compile and Download) model file stm32f4_boot_256k.mdl to the
target for one time. The target is now running at boot firmware (without a valid user
application).

2.  Build user application
Build model file stm32f4_user_app.mdl, the output binary file will be created in
output directory “stm32f4_user_app_stm32f4\stm32f4_user_app.bin”.
3.  Generate binary file with embedded CRC32 calculation. Run below command at Matlab
command window.

[sta,msg] = amg_iaptool_binconvert('stm32f4_user_app_stm32f4\stm32f4_user_app.bin’,'’256k’,'stm32f4_user_app_convert.bin’)

-
4\ Comman d Window I re— =R X

File Edit Debug Desktop Window Help £

>» [sta,msg] = amg_iaptool bineconvert('stm3Zf4 user app_stm3Zf4'stm32f4_user_app.bin','258k','stm3Zf4_user app_convert.bin']

sta =

nsg =

CRC=EFZAEBFDF

s o |

OVR

The binary conversion tool will generate output file stm32f4_user_app_convert.bin with
embedded CRC32 at the end of memory sector (256kB size).
4.  Program the User application at first time
After done programing the boot firmware in step 1, it is no IAP handle running due to no
valid user program. To program user application at first time still need ST-Link. use this

command line run for program user application for the first time.
[err,msg]=system('"C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\ST-LINK
Utility\ST-LINK_CLl.exe" -p "stm32f4_user_app_convert.bin" 0x8020000 -v -Q -rst’)

11/15



Bootloader and IAP with Waijung Blockset
Aimagin

4\ Command Window -- - S N

File Edit Debug Desktop Window Help ~

>> [err,msg] =system('"C:\Program Files (x86)\STHicroslectronics|STH3Z ST-LINK Utility.ST-LINK Utility)\ST-LINK_CLT.=x=" —p "stm32f4_user_app_convert.bin” 0x8020000 —v -Q -rst')
err =

o

msg =

$TH3Z ST-LINE CLI v2.0.0
STM32 ST-LINK Command Lins Interface

ST-LINK SN : Old ST-LINK firmvars/ST-LINK alrsady used
ST-LINK Firmmwars version : V2J14S0 (Need Update)
0ld ST-LINK firmware detected!
Please upgrade it from ST-LINE->'Firmware update' menu.
Connected wia SUD.
Connsction mede : Normal.
Devics ID:0x413
Device flash Size : 1024 Kbytes
Device family :STM32F40xx/Falx
Loading file...
Flash Programing:
File : Stm32Zf4_user_app_convert.bin
Address : 0x08020000
Flash memory programming and verification...
Flash memory programmed in 8s and 845ms.
Verification...OK
Programming Complete.

MCU Peset.

fe > |

OVR

IAP protocol demo

When the target run in User Application (programming done at previous step), then it is now able
be handle the IAP protocol.

e Overview, to program the Target board via IAP (CAN), Host PC need another STM32F4
or STM32F0 board with CAN interface to convert the UART command to CAN message,
and also receive CAN message then convert to UART response back to Host PC. As
shown below diagram.

.

el (CAN-Serial Bridge)
Target CAN bus A

Host PC

e CAN-Serial bridge
Build model file stm32f4_can_serial_bridge_binary.mdl to run as CAN-Serial Bridge
device. The protocol is similar to below URL except the target board is STM32F4:
http://waijung.aimagin.com/index.htm?can_to_serial_bridge.htm
e USB Converter used for USB to serial conversion. If use “aMG_USBConverter-N” or
“aMG_USBConnect” for serial conversion, time for program may be reduced by set

12/15


http://www.google.com/url?q=http%3A%2F%2Fwaijung.aimagin.com%2Findex.htm%3Fcan_to_serial_bridge.htm&sa=D&sntz=1&usg=AFQjCNFxNCcJ7HXtdXX-XwlQeAeiWf1PyQ

Bootloader and IAP with Waijung Blockset
Aimagin

Latency to 1ms. Follow this instruction:
http://waijung.aimagin.com/index.htm?latency time setting.htm
e CAN bus message used in IAP demo

Step 1: Host send serial command to enable CAN-Serial Bridge to receive ID type
standard, and ID filter is OxFF. See topic Filter setting command

Step 2: Host transmit CAN message (via CAN-Serial bridge), command CONNECT:
Host Tx : [CCP_CONNECT] [CTR] [x] [X] [X] [X] [X] [X]
Slave Tx: [0xFF] [CODE] [CTR] [x] [x] [x] [X] [X]
; Where CODE=0 indicate success.
: CTR is command counter
Step 3: Host transmit, command CCP_GET_SEED for programming.
Host Tx : [CCP_GET_SEED] [CTR] [0x40] [x] [X] [X] [X] [X]
Slave Tx: [0xFF] [CODE] [CTR] [PROTECT] [Key1] [KeyZ2] [Key3] [Key4]
; Where PROTECT is programming protection status.
; Key1, Key2, Key3 and Key4 is seed key use by unlock command.
Step 4: Host transmit, command CCP_UNLOCK for enable programming.
Host Tx : [CCP_UNLOCK] [CTR] [0] [0] [Key1] [Key2] [Key3] [Key4]
Slave Tx: [0xFF] [CODE] [CTR] [Privileged status] [x] [x] [X] [X]
; Where Key1, Key2, Key3 and Key4 is seed key from GET_SEED command.
Step 5: Host transmit, command CCP_SET_MTA to configure address of Upgrade ROM
(Extension address = 3), address to configure = 0x00000000.
Host Tx : [CCP_SET_MTA] [CTR] [MTAO] [3] [0] [0] [O] [O]
Slave Tx: [0xFF] [CODE] [CTR] [x] [x] [X] [X] [X]
: Where MTAO =0
Step 6: Host transmit, command CCP_CLEAR_MEMORY to erase flash memory at the
current configuration of MTA done by previous step. The memory size to erase is 256kB.
Host Tx : [CCP_CLEAR_MEMORY] [CTR] [0x00] [0x04] [0x00] [0x00] [x] [X]
Slave Tx: [FF] [CODE] [CTR] [x] [X] [X] [X] [X]
Step 7: Host transmit, command CCP_SET_MTA to configure address of Upgrade ROM
(Extension address = 3), address to configure = 0x00000000.
Host Tx : [CCP_SET_MTA] [CTR] [MTAO] [3] [0] [0] [O] [O]
Slave Tx: [0xFF] [CODE] [CTR] [x] [x] [x] [X] [X]
: Where MTAO =0
; Extension address = 3 for upgrade ROM.
Step 8: Host transmit the boot ROM data, command CCP_PROGRAM and
CCP_PROGRAM_6.
CCP_PROGRAM_6:
Host Tx : [CCP_PROGRAM_6] [CTR] [DO] [D1] [D2] [D3] [D4] [D5]
Slave Tx: [0xFF] [CODE] [CTR] [MTAO] [Add3] [Add2] [Add1] [AddO]
; Where Add3, Add2,Add1 and AddO is post increment address.

13/15


http://www.google.com/url?q=http%3A%2F%2Fwaijung.aimagin.com%2Findex.htm%3Flatency_time_setting.htm&sa=D&sntz=1&usg=AFQjCNFhgDFAjBIGo_dPFmWlgGi6po03uQ
http://www.google.com/url?q=http%3A%2F%2Fwaijung.aimagin.com%2Findex.htm%3Fcan_to_serial_bridge.htm&sa=D&sntz=1&usg=AFQjCNFxNCcJ7HXtdXX-XwlQeAeiWf1PyQ

Bootloader and IAP with Waijung Blockset
Aimagin

CCP_PROGRAM:
Host Tx : [CCP_PROGRAM] [CTR] [SIZE] [DO] [D1] [D2] [D3] [D4]
Slave Tx: [0xFF] [CODE] [CTR] [MTAO] [Add3] [Add2] [Add1] [AddO]
; Where SIZE = 1 to 5, number of bytes to program
; Add3, Add2,Add1 and AddO is post increment address.

Following diagram showing transmit sequence for upgrade ROM data.

i

Set Rem_Courd = 256°1024

Mo

Rem_Courd >=§ #

Transmil command:
CCP_PROGRAM.
Size = Ram_Count

Set Rem_Counl = 0

Transm# command:

CCP_PROGRAM 6

Transme command;
CCP_DISCOMNECT

=

Step 9: Host transmit, command CCP_DISCONNECT. Target MCU will reset to operate
in boot firmware when receive this command from Host.

Host Tx : [CCP_DISCONNECT] [CTR] [x] [x] [X] [X] [X] [X]

Slave Tx: [0xFF] [CODE] [CTR] [x] [X] [x] [X] [X]

14/15



Bootloader and IAP with Waijung Blockset
Aimagin

IAP testing (Via CAN-Serial Bridge)

Command line:
[sta,msg] = amg_canserial_bridge(‘<function>’, <canid>,’<filename>’,’<sectorsize>’)

At Matlab command windows, run command as show in below picture.

Eile Edit Debug Desktop Window Help £

>» §========= Program via CAN-Serial Bridge =========
%1. Pun binary converter command:
[sta,msg] = amg_iaptool binconvert('stm3Zf4_user_app stm3Zf4'stm32f4_user_app.bin','256k', 'stm32Zf4_user_app_convert.bin'

%2. Pun binary download command:

[sta,msg] = amg canserial bridge('FW _UPGRADE', hexZdec('S0'), 'sStm32f4 user app convert.bin', '258k')
sta =

1
msg =

CRC=4341EF3D

-

b

Wait until IAP process to finish.
r-‘k Command Window @M‘

File Edit Debug Desktop Window Help £

Address: 3FFAB n
Address: 3FFAE

Address: 3FFB4

Address: 3FFEA

Address: 3FFCO

Address: 3FFCeé

Address: 3FFCC

Address: 3FFD2

Address: 3FFDE

Address: 3FFDE

Address: 3FFE4

Address: 3FFEA

Address: 3FFFO

Address: 3FFFé

Address: 3FFFC

Disconnect CCP from CCP device.

Success.

sta =

msg =

Success.

OvR

15/15



